Zurück

FH-Prof. Priv.-Doz. Dipl.-Ing. Mag. Dr. Matthias Zeppelzauer

  • Forschungsgruppenleiter
    Forschungsgruppe Media Computing
    Institut für Creative\Media/Technologies
  • Department Medien und Digitale Technologien
Arbeitsplatz: A - Campus-Platz 1
M: +43/676/847 228 652

Studiengänge

  • Creative Computing (BA)
  • Data Science and Business Analytics (BA)
  • Medientechnik (BA)
  • Data Intelligence (MA)
  • Smart Engineering (BA)

Departments

  • Medien und Digitale Technologien
  • Informatik und Security

Kurzprofil

  • Senior Researcher am Institut für Creative Media Technologies - Fachochschule St. Pölten
  • Bakkalaureatstudium Medieninformatik und Magisterstudium Computergraphik und Bildverarbeitung - Technische Universität Wien
  • Wirtschaftsinformatik - Universität Wien und Technische Universität Wien
  • 2011: Doktoratsstudium im Bereich Audio- und Videoanalyse und Mustererkennung - Technische Universität Wien
  • Forscher am Institut für Softwaretechnik und interaktive Systeme - Technische Universität Wien
  • Forschungsschwerpunkte: inhaltsbasierte Audioanalyse (Bioakustik, Geräuscherkennung, Signalverbesserung), Bild- und Videoanalyse (Videosegmentierung, Objekterkennung, Social Media Analysis, Life Logging), sowie Datamining (Feature Selektion, Clustering)
  • Mitglied in Programmkomitees zahlreicher Fachzeitschriften und Konferenzen im Multimediabereich

Projekte

Publication Browser

Ausgewählte Publikationen

Slijepcevic, D., Horst, F., Lapuschkin, S., Horsak, B., Raberger, A.-M., Kranzl, A., Samek, W., Breitender, C., Schöllhorn, W., & Zeppelzauer, M. (2022). Explaining Machine Learning Models for Clinical Gait Analysis. ACM Transactions on Computing for Healthcare, 3(2), 14:1-14:27. https://doi.org/10/gnt2s9
Tucek, G., Maidhof, C., Vogl, J., Heine, A., Zeppelzauer, M., Steinhoff, M., & Fachner, J. (2022). EEG Hyperscanning and Qualitative Analysis of Moments of Interest in Music Therapy for Stroke Rehabilitation - A Feasibility Study. Brain Science, 12(565). https://doi.org/10.3390/brainsci12050565
Baumhauer, T., Schöttele, P., & Zeppelzauer, M. (2022). Machine Unlearning: Linear Filtration for Logit-based Classifiers. Journal on Machine Learning. https://doi.org/10.1007/s10994-022-06178-9
Slijepčević, D., Henzl, M., Klausner, L. D., Dam, T., Kieseberg, P., & Zeppelzauer, M. (2021). k‑Anonymity in Practice: How Generalisation and Suppression Affect Machine Learning Classifiers. Computers & Security, 111, 19. https://doi.org/10.1016/j.cose.2021.102488
Bernard, Jürgen, Hutter, M., Sedlmair, M., Zeppelzauer, Matthias, & Munzner, Tamara. (2021). A Taxonomy of Property Measures to Unify Active Learning and Human-centered Approaches to Data Labeling. ACM Transactions on Interactive Intelligent Systems (TiiS), 11(3–4), 1–42. https://doi.org/10/gnt2wf
Bernard, J., Hutter, M., Zeppelzauer, M., Sedlmair, M., & Munzner, T. (2021). ProSeCo: Visual analysis of class separation measures and dataset characteristics. Computers & Graphics, 96, 48–60. https://doi.org/https://doi.org/10.1016/j.cag.2021.03.004
Zielinski, B., Lipinski, M., Juda, M., Zeppelzauer, Matthias, & Dlotko, Pawel. (2021). Persistence Codebooks for Topological Data Analysis. Journal of Artificial Intelligence Review, 54, 1969–2009. https://doi.org/https://doi.org/10.1007/s10462-020-09897-4
Horsak, B., Slijepcevic, D., Raberger, A.-M., Schwab, C., Worisch, M., & Zeppelzauer, M. (2020). GaitRec, a large-scale ground reaction force dataset of healthy and impaired gait. Scientific Data, 7:143(1), 1–8. https://doi.org/10/gh372d
Zielinski, B., Lipinski, Michal, Juda, M., Zeppelzauer, M., & Dlotko, Pawel. (2019). Persistence Bag-of-Words for Topological Data Analysis. Proceedings of the International Joint Conference on Artificial Intelligence 2019, 6. https://doi.org/10/ghpp7z
Despotovic, M., Koch, D., Leiber, S., Döller, M., Sakeena, M., & Zeppelzauer, M. (2019). Prediction and analysis of heating energy demand for detached houses by computer vision. Energy & Buildings, 193, 29–35. https://doi.org/10/fsxn
Bernard, Jürgen, Hutter, M., Sedlmair, M., Zeppelzauer, Matthias, & Munzner, Tamara. (2019). A taxonomy of property measures to support the explainability of the interactive data labeling process. ACM Transactions on Interactive Intelligent Systems (TiiS), Submitted.
Koch, D., Despotovic, M., Sakeena, M., Döller, M., & Zeppelzauer, M. (2018). Visual Estimation of Building Condition with Patch-level ConvNets. Proceedings of the 2018 ACM Workshop on Multimedia for Real Estate Tech - RETech"18, 12–17. https://doi.org/10/ghpp2m
Zeppelzauer, M., Zielinski, B., Juda, M., & Seidl, M. (2018). A Study on Topological Descriptors for the Analysis of 3D Surface Texture. Journal on Computer Vision and Image Understanding (CVIU), 167, 74–88. https://doi.org/10/ghpp2h
Wagner, M., Slijepcevic, D., Horsak, B., Rind, A., Zeppelzauer, M., & Aigner, W. (2018). KAVAGait: Knowledge-Assisted Visual Analytics for Clinical Gait Analysis. IEEE Transactions on Visualization and Computer Graphics (TVCG), 25(3), 1528–1542. https://doi.org/10/ghppzn
Bernard, J., Zeppelzauer, M., Lehmann, M., Müller, M., & Sedlmair, M. (2018). Towards User-Centered Active Learning Algorithms. Computer Graphics Forum, 37, 121–132. https://doi.org/10/gdw79h
Slijepcevic, D., Zeppelzauer, M., Raberger, A.-M., Schwab, C., Schuller, M., Baca, A., Breiteneder, C., & Horsak, B. (2018). Automatic Classification of Functional Gait Disorders. IEEE Journal of Biomedical and Health Informatics, 5(22), 1653–1661. https://doi.org/10/ghz24w
Zeppelzauer, M., Ringot, A., & Taurer, F. (2018). SoniControl - A Mobile Ultrasonic Firewall. Proceedings of the ACM International Conference on Multimedia. ACM Multimedia Conference, Seoul, South Korea. https://doi.org/10/gh377f
Zeppelzauer, M., Despotovic, M., Sakeena, M., Koch, D., & Döller, M. (2018). Automatic Prediction of Building Age from Photographs. Proceedings of the ACM International Conference on Multimedia Retrieval (ICMR "18), 126–134. https://doi.org/10/ghpp2k
Bernard, J., Zeppelzauer, M., Sedlmair, M., & Aigner, W. (2018). VIAL – A Unified Process for Visual-Interactive Labeling. The Visual Computer, 34(1189), 16. https://doi.org/10/gd5hr3
Bernard, Jürgen, Hutter, M., Zeppelzauer, M., Fellner, D., & Sedlmair, M. (2017). Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study. IEEE Transactions on Visualization and Computer Graphics (TVCG), 24(1). https://doi.org/10/gcqb3r
Zeppelzauer, M., & Schopfhauser, D. (2016). Multimodal classification of events in social media. Image and Vision Computing. https://doi.org/10/ghpp2q
Zaharieva, M., Del Fabro, M., & Zeppelzauer, M. (2015). Cross-Platform Social Event Detection. IEEE Multimedia, 22(3), 14. https://doi.org/10/gh3773
Salvador, A., Zeppelzauer, M., Manchón-Vizuente, D., Calafell, A., & Giró-i-Nieto, X. (2015, April 28). Cultural Event Recognition with Visual ConvNets and Temporal Models. Proceedings of the CVPR Workshop ChaLearn Looking at People 2015. Computer Vision and Pattern Recognition (CVPR), Boston, Massachusetts, United States. http://arxiv.org/abs/1504.06567
Zaharieva, M., Zeppelzauer, M., Del Fabro, M., & Schopfhauser, D. (2015, March 24). Social Event Mining in Large Photo Collections. Proceedings of the International Conference on Multimedia Retrieval. ACM International Conference on Multimedia Retrieval, Shanghai, China.
Zeppelzauer, M. (2013). Automated detection of elephants in wildlife video. EURASIP Journal on Image and Video Processing, 2013(1), 46. https://doi.org/10/f3snb6
Stöger, A., Heimann, G., Zeppelzauer, M., Ganswindt, A., Hensman, S., & Charlton, B. (2012). Visualizing Sound Emission of Elephant Vocalizations: Evidence for Two Rumble Production Types. Plos One, 7(11:e48907). http://dx.plos.org/10.1371/journal.pone.0048907
Mitrović, D., Zeppelzauer, M., & Breiteneder, C. (2010). Features for Content-Based Audio Retrieval. In Advances in Computers (Vol. 78, pp. 71–150). Burlington: Academic Press. http://www.sciencedirect.com/science/article/pii/S0065245810780037